Nuevos nanosensores aceleran el desarrollo de fármacos

Nuevos nanosensores aceleran el desarrollo de fármacos: "Un grupo de ingenieros y científicos de la Stanford University de California ha desarrollado nanosensores capaces de medir la efectividad de los fármacos y sus posibles efectos secundarios sobre el organismo humano, por lo que podrían acelerar el proceso de creación de medicamentos para distintas patologías. Los microchips pueden determinar, por ejemplo, la forma en la cual las proteínas se unen entre sí. Por Pablo Javier Piacente.

Nuevos nanosensores aceleran el desarrollo de fármacos


Nanosensores desarrollados por especialistas de la Stanford University de California, en Estados Unidos, pueden determinar la eficacia de un fármaco y sus efectos secundarios, agilizando así el diseño de nuevos medicamentos. Se emplean microchips que pueden precisar las características de las uniones entre proteínas, por ejemplo, entre otros procesos de importancia.

A través de una matriz de un centímetro de tamaño, los nuevos nanosensores pueden realizar un seguimiento continuo de las uniones de proteínas, alcanzando a evaluar miles de eventos más con respecto a cualquier otro biosensor existente en la actualidad. Asimismo, los nuevos nanosensores son capaces de detectar interacciones con mayor sensibilidad.

Por otro lado, entregan los resultados significativamente más rápido que los actuales sistemas. El avance ha sido difundido a través de una nota de prensa emitida por la Universidad de Stanford , y por un informe elaborado por los responsables de la investigación y disponible en el medio especializado Nature Nanotechnology.

Según Shan Wang, profesor de ciencia de los materiales e ingeniería en Stanford, los nuevos microchips pueden almacenar información de decenas de miles de proteínas de interés por cada unidad, permitiendo desarrollar los análisis y experimentos de unión de proteínas con suma rapidez.

Una técnica más rápida y efectiva

Otro de los especialistas que participó de la investigación, Richard Gaster, explicó que en teoría estos nanosensores podrían comprobar la afinidad de un fármaco para cada proteína en el cuerpo humano. De esta manera, el camino que se abre en la investigación farmacológica a partir de este desarrollo podría ser muy alentador.

Una gran ventaja de este sistema de nanosensores es un modelo de análisis desarrollado por los ingenieros e investigadores que les permite predecir con exactitud el resultado final de una gran cantidad de interacciones entre proteínas, en sólo unos minutos. Las técnicas actuales suelen controlar no más de cuatro interacciones simultáneas, en procesos que pueden tardar horas.

El grupo de investigación de Shan Wang desarrolló esta tecnología de nanosensores hace varios años, demostrando su sensibilidad y efectividad en experimentos en los cuales se buscaba detectar mediante un biomarcador la proteína asociada al cáncer en la sangre de un ratón. Con esta técnica se obtuvo el éxito en una milésima parte de la concentración que las técnicas disponibles en el mercado requieren para realizar la detección.

Esta investigación anterior, resumida en un artículo de Nature Medicine en 2009, fue el antecedente principal que permitió llegar al desarrollo de los actuales nanosensores. Además de su utilidad en la industria farmacéutica y en el área de la medicina, este avance podría propiciar un fuerte crecimiento en el sector de los nanosensores de máxima potencia.

Tecnología disponible y económica

Un punto vital es que estos dispositivos se basan en el mismo tipo de sensor utilizado en discos duros de ordenador. Como los microchips utilizan la tecnología actual de la microelectrónica y los procedimientos existentes, los costes son muy bajos y permiten multiplicar rápidamente el número de nanosensores a utilizar.
Esta realidad es una de las ventajas más importantes de la investigación. Aunque durante los trabajos realizados se utilizaron un poco más de 1.000 sensores por centímetro cuadrado, los especialistas creen que se puede llegar a contar con más de 100.000 sensores por centímetro cuadrado, sin que esto requiera empujar los límites tecnológicos de la industria de la microelectrónica.

Los beneficios incluyen la posibilidad de predecir los efectos adversos de un nuevo medicamento antes de probarlo en un paciente humano. Para ello, los investigadores colocan en la matriz de los nanosensores las proteínas de una enfermedad determinada y de los órganos del cuerpo humano relacionados, para posteriormente sumar el medicamento.

De esta manera, se puede determinar con una rapidez inédita hasta el momento qué proteínas se unen con la droga y las características de esa unión. Los especialistas pueden apreciar la fuerza con la cual el fármaco se une a las células de la enfermedad, como así también a cualquier otra célula en el cuerpo humano.

(Tendencias21)
"

Nueva guía de lectura del genoma humano

Nueva guía de lectura del genoma humano: "Un equipo internacional de investigadores ha puesto a disposición pública una gran base de datos de elementos funcionales del genoma humano, así como las herramientas para interpretarlos, como un recurso abierto a la comunidad científica, las instituciones académicas, los redactores especializados y la sociedad en general. Por Elena Higueras.

Nueva guía de lectura del genoma humano

La revista PLoS Biology ha publicado un nuevo artículo sobre el programa ENCODE (Enciclopedia de Elementos de ADN), que proporciona una visión general de los actuales esfuerzos del equipo por interpretar la secuencia del genoma humano, así como una guía para el uso de la enorme cantidad de datos y recursos obtenidos hasta ahora por el proyecto, según recoge Science Daily.

En palabras de Ross Hardison, profesor de Bioquímica y Biología Molecular de la Penn State University de Estados Unidos y uno de los investigadores principales del equipo del proyecto ENCODE, la filosofía que está detrás de este trabajo es la apertura científica, la transparencia y la colaboración entre las distintas subdisciplinas de la ciencia.

ENCODE viene de la mano del Proyecto Genoma Humano, un estudio que duró 13 años y que tuvo como objetivo identificar los aproximadamente 20.000 a 25.000 genes que existen en el ADN humano. Ambos comparten la creencia de que el código abierto ayuda a la expansión del conocimiento científico y a la comprensión pública de la ciencia.

El proyecto ha logrado este objetivo de difusión de la ciencia mediante la publicación de su base de datos en Internet y, también, con la puesta a disposición de herramientas que facilitan el uso de estos datos en la web del proyecto.

Del laboratorio a las aulas

'Los recursos de ENCODE ya están siendo utilizados por los científicos para sus investigaciones, pero lo realmente revolucionario es que también se están usando en las aulas para formar a estudiantes de todos los ámbitos de la biología. Nuestros alumnos aquí en Penn State están utilizando datos reales de variaciones y funciones genómicas en sus ejercicios académicos, poco después de que los laboratorios hayan generado estos datos”, afirma Hardison.

El genoma humano contiene cerca de 3.000 millones de pares de bases (dos nucleótidos opuestos y complementarios en las cadenas de ADN y ARN), por lo que la catalogación e interpretación de toda esta información es una tarea monumental.

'Tenemos un objetivo muy noble: identificar la función de todos los nucleótidos del genoma humano', apunta el director del proyecto. 'No sólo estamos descubriendo los genes que dan información a las células y fabrican proteínas, sino que también queremos saber lo que determina que las proteínas se produzcan en las células apropiadas y en el momento oportuno. Encontrar los elementos de ADN que dirigen la expresión regulada de los genes es uno de los principales objetivos de ENCODE'.

Pero no el único. Otro de sus retos es la identificación de regiones funcionales del genoma humano, muchas de las cuales tienen bastante misterio, como explica el investigador: 'La secuencia del ADN humano a menudo se describe como una especie de lenguaje, pero sin una clave para interpretarlo. Sin una comprensión completa de la 'gramática', bien podría ser un gran revoltijo de letras'.

El ADN y la enfermedad

En el comunicado, el equipo muestra cómo los datos proporcionados por ENCODE pueden ser de utilidad inmediata en la interpretación de las asociaciones entre las distintas enfermedades y las secuencias de ADN, que pueden variar de persona a persona.

Por ejemplo, los científicos saben que las variantes de ADN situadas en un gen llamado Myc están relacionadas con múltiples tipos de cáncer, pero hasta hace poco el mecanismo que subyacente a esta asociación se desconocía.

Los datos de ENCODE están siendo utilizados para confirmar que estas variantes de ADN pueden modificar la unión de ciertas proteínas, lo que lleva a una mayor expresión del gen Myc y, por tanto, a mayores probabilidades de desarrollo del cáncer. En este sentido, el programa ya ha trabajado en estudios similares que relacionan las variantes de ADN con la susceptibilidad a diversas enfermedades humanas.

Otro de los investigadores principales del proyecto, Richard Myers, presidente y director del Instituto de Biotecnología HudsonAlpha, explicó que el proyecto ENCODE es único, ya que requiere la colaboración de varias personas en todo el mundo que están a la vanguardia de la investigación en cada uno de sus campos: 'La gente está trabajando de manera coordinada para averiguar la función de nuestro genoma humano. La importancia del proyecto se extiende más allá del conocimiento básico de quién y qué somos como seres humanos, para llegar hasta la comprensión de la salud humana y de la enfermedad'.

Comparación entre especies

Además, los científicos del proyecto ENCODE están aplicando hasta 20 pruebas diferentes en 108 líneas celulares comúnmente utilizadas para recopilar datos importantes. John Stamatoyannopoulos, profesor asistente de genómica y medicina en la Universidad de Washington y otro de los investigadores principales del programa, apunta que ENCODE se ha encargado de producir muchos ensayos, como procedimientos de biología molecular para medir la actividad de los agentes bioquímicos, pruebas que son ahora fundamentales para la biología. 'La profundidad, la calidad y la diversidad de los datos de ENCODE no tienen precedentes', sostiene el investigador.

Por su parte, Hardison explica que los científicos disponen de un número limitado de herramientas para explorar el genoma, instrumentos que ya han sido ampliamente utilizados en la comparación entre las especies.

'Por ejemplo, podemos comparar los seres humanos y los chimpancés y obtener resultados fascinantes', afirma el profesor, y continúa: 'Pero muy pocas proteínas y otros elementos de ADN difieren de una manera fundamental entre los seres humanos y los chimpancés. La verdadera diferencia entre nosotros y nuestros primos cercanos se encuentra en la expresión génica (el nivel básico en el que los genes dan lugar a rasgos como el color de los ojos, la altura y la susceptibilidad a una enfermedad en particular). ENCODE ayuda a mapear las proteínas involucradas en la regulación y la expresión génica. Nuestro trabajo no sólo explica cómo encontrar los datos, sino que también cómo aplicarlos a la interpretación del genoma humano'.

(Tendencias21)
"

Ejemplos de alimentos transgénicos

Ejemplos de alimentos transgénicos: "

Vegetales resistentes a las plagas, tomates que no se pudren tan rápidamente, semillas de arroz enriquecidas con vitaminas, carne de animales y aves modificados genéticamente y huevos con aditivos son solo algunos ejemplos de alimentos transgénicos que consumimos diariamente.

Seguramente nos ha pasado de ir a un gran almacén y notamos frutas y verduras que parecen sacados de una película o un anuncio de publicidad, ¿Cree usted que estos productos son mejores?...

Uno de los alimentos básicos en nuestra pirámide nutricional es la leche. Lo que posiblemente ignoremos es que la mayoría de la producción mundial de leche es transgénica. Los bovinos son inyectados con una hormona de crecimiento llamada rBGH, que es propiedad de Monsanto y que les hace producir hasta el doble de leche. Esta hormona (la rBGH) esta relacionada con el cáncer de mamas, próstata y colon.

El trigo también ha sido modificado genéticamente para hacerlo resistente a las sequías, las plagas e insectos, y en la actualidad cada día son más las personas que se han vuelto intolerantes a este alimento (celíacos)

La soja y el maíz son de los alimentos sobre los cuales más se ha trabajado genéticamente produciendo mutaciones resistentes a casi todo pero que cuando son procesados y consumidos tienen “efectos colaterales” sobre nuestro organismo.

El arroz genéticamente modificado para que contenga mayores proporciones de vitaminas ha sido rechazado por países como Japón por ejemplo, dado que todavía no se conocen las consecuencias que pueden ocasionar en nuestro organismo su consumo cotidiano y masivo.

Las grandes corporaciones aseguran que es necesario este tipo de manipulaciones genéticas en los alimentos para poder producir la cantidad necesaria, a un costo bajo para alimentar a toda la población mundial, justificándose, mientras que los ecologistas plantean que la cantidad de alimento que se produce en el mundo es suficiente para todos sus habitantes, pero que está mal repartido.



Mientras tanto, cada día aparecen de la nada nuevas patologías relacionadas con el consumo de cierto tipo de alimentos que fueron modificados genéticamente.

"